본문 바로가기

problem solving

Problem 30 - Find the sum of all the numbers that can be written as the sum of fifth powers of their digits. 링크 Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: 1634 = 14 + 64 + 34 + 44 8208 = 84 + 24 + 04 + 84 9474 = 94 + 44 + 74 + 44 As 1 = 14 is not a sum it is not included. The sum of these numbers is 1634 + 8208 + 9474 = 19316. Find the sum of all the numbers that can be written as the sum of fifth powers of their digits. python ans = 0 for.. 더보기
Problem 29 - How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100? 링크 Consider all integer combinations of ab for 2 a 5 and 2 b 5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, 35=243 42=16, 43=64, 44=256, 45=1024 52=25, 53=125, 54=625, 55=3125 If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms: 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 How many distinct terms are in the .. 더보기
Problem 28 - What is the sum of both diagonals in a 1001 by 1001 spiral? 링크 Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagonals is 101. What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way? 손으로 풀 수도 있으나 귀찮아서 파이썬 ㄱㄱ python sum([4*x*x - 6.. 더보기
Problem 27 - Find a quadratic formula that produces the maximum number of primes for consecutive values of n. 링크 Euler published the remarkable quadratic formula: n² + n + 41 It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible by 41. Using computers, the incredible formula n² 79n + 1601 was discovered, which produces 80 primes fo.. 더보기
Problem 26 - Find the value of d < 1000 for which 1/d contains the longest recurring cycle. 링크 A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: 1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1 Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle. Find the value of d 1000 for which.. 더보기
Problem 25 - What is the first term in the Fibonacci sequence to contain 1000 digits? 링크 The Fibonacci sequence is defined by the recurrence relation: Fn = Fn1 + Fn2, where F1 = 1 and F2 = 1. Hence the first 12 terms will be: F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21 F9 = 34 F10 = 55 F11 = 89 F12 = 144 The 12th term, F12, is the first term to contain three digits. What is the first term in the Fibonacci sequence to contain 1000 digits? python f1 = 1 f2 = 1 term = .. 더보기
Problem 23 - Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers. 링크 A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number. A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n. As 12 is the smallest abundant number, .. 더보기
Problem 22 - What is the total of all the name scores in the file of first names? 링크 Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score. For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 .. 더보기
Problem 21 - Evaluate the sum of all amicable pairs under 10000. 링크 Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(2.. 더보기
Problem 20 - Find the sum of digits in 100! 링크 n! means n (n 1) ... 3 2 1 Find the sum of the digits in the number 100! easy with python sum([int(x) for x in str(math.factorial(100))]) 더보기