All square roots are periodic when written as continued fractions and can be written in the form:
N = a0 + |
1
|
||
a1 + |
1
|
||
a2 + |
1
|
||
a3 + ... |
For example, let us consider 23:
23 = 4 + 23 — 4 = 4 + |
1
|
= 4 + |
1
|
|
1
23—4 |
1 + |
23 – 3
7 |
If we continue we would get the following expansion:
23 = 4 + |
1
|
|||
1 + |
1
|
|||
3 + |
1
|
|||
1 + |
1
|
|||
8 + ... |
The process can be summarised as follows:
a0 = 4, |
1
23—4 |
= |
23+4
7 |
= 1 + |
23—3
7 |
|
a1 = 1, |
7
23—3 |
= |
7(23+3)
14 |
= 3 + |
23—3
2 |
|
a2 = 3, |
2
23—3 |
= |
2(23+3)
14 |
= 1 + |
23—4
7 |
|
a3 = 1, |
7
23—4 |
= |
7(23+4)
7 |
= 8 + | 23—4 | |
a4 = 8, |
1
23—4 |
= |
23+4
7 |
= 1 + |
23—3
7 |
|
a5 = 1, |
7
23—3 |
= |
7(23+3)
14 |
= 3 + |
23—3
2 |
|
a6 = 3, |
2
23—3 |
= |
2(23+3)
14 |
= 1 + |
23—4
7 |
|
a7 = 1, |
7
23—4 |
= |
7(23+4)
7 |
= 8 + | 23—4 |
It can be seen that the sequence is repeating. For conciseness, we use the notation 23 = [4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely.
The first ten continued fraction representations of (irrational) square roots are:
2=[1;(2)], period=1
3=[1;(1,2)], period=2
5=[2;(4)], period=1
6=[2;(2,4)], period=2
7=[2;(1,1,1,4)], period=4
8=[2;(1,4)], period=2
10=[3;(6)], period=1
11=[3;(3,6)], period=2
12= [3;(2,6)], period=2
13=[3;(1,1,1,1,6)], period=5
Exactly four continued fractions, for N 13, have an odd period.
How many continued fractions for N 10000 have an odd period?